18 research outputs found

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Multilevel Solvers for Unstructured Surface Meshes

    Full text link

    Inverse spectral problem with partial information on the potential

    Get PDF
    NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. The Schrodinger operator [...] is considered on the real axis. We discuss the inverse spectral problem where discrete spectrum and the potential on the positive half-axis determine the potential completely. We do not impose any restrictions on the growth of the potential but only assume that the operator is bounded from below, has discrete spectrum, and the potential obeys [...]. Under these assertions we prove that the potential for [...] and the spectrum of the problem uniquely determine the potential on the whole real axis. Also, we study the uniqueness under slightly different conditions on the potential. The method employed uses Weyl m-function techniques and asymptotic behavior of the Herglotz functions

    Fine Level Feature Editing for Subdivision Surfaces

    No full text
    In many industrial design modeling scenarios the designer wishes to edit small feature lines---such as variable width and height creases---on otherwise smooth surface patches. When the path of such a feature does not align with an iso-parameter line or crosses patch boundaries it becomes increasingly difficult to maintain good editing semantics of the underlying surface. In this paper we describe an algorithm and implementation allowing the interactive creation and manipulation of fine scale feature curves on subdivision surfaces. In particular, our approach addresses the problem of defining the path of such feature curves independent of the location of surface iso-parameter lines and global patch boundaries. The feature lines are modeled as swept displacement curves with variable profiles, providing a rich toolbox of shapes. Furthermore, the hierarchical editing semantics of subdivision surface based representations carry through to our extended setting, ensuring "good" behavior of the feature lines under coarse scale surface edits

    Variational Normal Meshes

    No full text
    this article, we propose a novel method to approximate a given mesh with a normal mesh. Instead of building an associated parameterization on the fly, we assume a globally smooth parameterization at the beginning and cast the problem as one of perturbing this parameterization. Controlling the magnitude of this perturbation gives us explicit control over the range between fully constrained (only scalar coefficients) and unconstrained (3-vector coefficients) approximations. With the unconstrained problem giving the lowest approximation error, we can thus characterize the error cost of normal meshes as a function of the number of nonnormal offsets---we find a significant gain for little (error) cost. Because the normal mesh construction creates a geometry driven approximation, we can replace the difficult geometric distance minimization problem with a much simpler least squares problem. This variational approach reduces magnitude and structure (aliasing) of the error further. Our method separates the parameterization construction into an initial setup followed only by subsequent perturbations, giving us an algorithm which is far simpler to implement, more robust, and significantly faste

    Variational normal meshes

    No full text
    Hierarchical representations of surfaces have many advantages for digital geometry processing applications. Normal meshes are particularly attractive since their level-to-level displacements are in the local normal direction only. Consequently, they only require scalar coefficients to specify. In this article, we propose a novel method to approximate a given mesh with a normal mesh. Instead of building an associated parameterization on the fly, we assume a globally smooth parameterization at the beginning and cast the problem as one of perturbing this parameterization. Controlling the magnitude of this perturbation gives us explicit control over the range between fully constrained (only scalar coefficients) and unconstrained (3-vector coefficients) approximations. With the unconstrained problem giving the lowest approximation error, we can thus characterize the error cost of normal meshes as a function of the number of nonnormal offsets---we find a significant gain for little (error) cost. Because the normal mesh construction creates a geometry driven approximation, we can replace the difficult geometric distance minimization problem with a much simpler least squares problem. This variational approach reduces magnitude and structure (aliasing) of the error further. Our method separates the parameterization construction into an initial setup followed only by subsequent perturbations, giving us an algorithm which is far simpler to implement, more robust, and significantly faster

    Variational normal meshes

    No full text
    Hierarchical representations of surfaces have many advantages for digital geometry processing applications. Normal meshes are particularly attractive since their level-to-level displacements are in the local normal direction only. Consequently, they only require scalar coefficients to specify. In this article, we propose a novel method to approximate a given mesh with a normal mesh. Instead of building an associated parameterization on the fly, we assume a globally smooth parameterization at the beginning and cast the problem as one of perturbing this parameterization. Controlling the magnitude of this perturbation gives us explicit control over the range between fully constrained (only scalar coefficients) and unconstrained (3-vector coefficients) approximations. With the unconstrained problem giving the lowest approximation error, we can thus characterize the error cost of normal meshes as a function of the number of nonnormal offsets---we find a significant gain for little (error) cost. Because the normal mesh construction creates a geometry driven approximation, we can replace the difficult geometric distance minimization problem with a much simpler least squares problem. This variational approach reduces magnitude and structure (aliasing) of the error further. Our method separates the parameterization construction into an initial setup followed only by subsequent perturbations, giving us an algorithm which is far simpler to implement, more robust, and significantly faster

    Globally Smooth Parameterizations with Low Distortion

    No full text
    Good parameterizations are of central importance in many digital geometry processing tasks. Typically the behavior of such processing algorithms is related to the smoothness of the parameterization and how much distortion it contains, i.e., how rapidly the derivatives of the parameterization change. Since a parameterization maps a bounded region of the plane to the surface, a parameterization for a surface which is not homeomorphic to a disc must be made up of multiple pieces. We present a novel parameterization algorithm for arbitrary topology surface meshes which computes a globally smooth parameterization with low distortion. We optimize the patch layout subject to criteria such as shape quality and parametric distortion, which are used to steer a mesh simplification approach for base complex construction. Global smoothness is achieved through simultaneous relaxation over all patches, with suitable transition functions between patches incorporated into the relaxation procedure. We demonstrate the quality of our parameterizations through numerical evaluation of distortion measures; the rate distortion behavior of semi-regular remeshes produced with these parameterizations; and a comparison with globally smooth subdivision methods. The numerical algorithms required to compute the parameterizations are robust and run on the order of minutes even for large meshes
    corecore